

筑波大学 知能ロボット研究室

University of Tsukuba, Intelligent Robot Laboratory

オドメトリについて

発表者: 澤邊 智哉(SWB)

作成者:SWB

2023/04/14 第5回 山彦セミナー

1.オドメトリの概要

2.オドメトリを取得,保存する方法(CSVファイルへ保存)

ロボットの走行経路を制御するには自己位置推定が必要 ⇒GPSやセンサを使った手法など様々な手法が存在

オドメトリ

車輪型移動ロボット(山彦のような)において車輪やステアリングの 回転角度から移動量を求めその累積計算から自己位置推定する 手法の総称

オドメトリについて詳しくは⇒https://openspur.org/~atsushi.w/jikken/odometry_and_coordinate.pdf

2 ypspur_rosにおけるオドメトリのトピックの確認

ypspur_rosにおいてオドメトリは/ypspur_ros/odomというトピックにmessageとして流れている

\$ rosrun ypspur_ros ypspur_ros _param_file:=/home/<user>/researches/programs/platform/yp-robotparams/robot-params/<ロボットの種類>.param

5. ターミナル⑤

\$ rostopic echo /ypspur_ros/odom

↑山彦を動かしてみて 何かしら値が表示されることを確認する!!!!!

3 オドメトリのトピックの取得

ypspur_rosにおいてオドメトリは/ypspur_ros/odomというトピックにmessageとして流れている

\$ rostopic echo /ypspur_ros/odom

↑で見ることができる

そのため/ypspur_ros/odomトピックに流れているmessageを subscribeするNodeを作ればよい!

オドメトリを取得,CSVファイルに保存するROSパッケージ作成

■前々回の資料を参考に新しいパッケージodomtestを作成

\$ cd ~/<work_space>/src

*<ワークスペース>/srcに移動

\$ catkin_create_pkg odomtest std_msgs rospy roscpp

4

```
$ cd ~/<work_space>/
*ワークスペースに移動
```

\$ catkin_make
*ワークスペースのビルド

できたodomtestパッケージ内のsrcファイル内(odomtest/src/)に internalからダウンロードしたodom_to_csv_node.cppを保存

5 オドメトリを取得するROSパッケージ作成

■ 前回の資料を参考にCMakeLists.txtを編集

137行目に以下を追加

add_executable(odom_to_csv_node src/odom_to_csv_node.cpp)
target_link_libraries(odom_to_csv_node \${catkin_LIBRARIES})

以上が完了したら\$ catkin_make ※workspace内へ移動するのを忘れずに!

6 odom_to_csv_node.cppの解説

#include <nav_msgs/Odometry.h>

使用するodometryのメッセージを指定

std::ofstream ofs("odm_subscribe.csv");

オドメトリを保存するためのcsvファイルを指定(ここを編集すれば保存場所を指定できる)

```
Void odomCallback(···)
```

```
オドメトリをsubscribeした際に呼び出す関数,変数にsubscribeしたオドメトリを代入する
```

```
Void geometry_quat_to_rpy(····)
```

subscribeしたオドメトリの角度はクォータニオンで表されているため、クォータニオンをオイラー角(roll,pitch,yaw) へ変換

(tf系については後のセミナーにて解説) クォータニオン,オイラー角について⇒https://qiita.com/drken/items/0639cf34cce14e8d58a5

7 odom_to_csv_node.cppの解説

ofs << robot_x << "," << robot_y << "," << yaw << std::endl;

csvにx,y,yaw角(z軸を中心とした角度)を保存(rollはx軸を中心とした角度,pitchはy軸を中心とした角度)

8 実際にオドメトリをsubscribeして保存する

- ターミナル(1) 1
 - \$ roscore
- ターミナル2 2

\$ rosrun ypspur_ros ypspur_ros _param_file:=/home/<user>/researches/programs/platform/yp-robotparams/robot-params/<ロボットの種類>.param

ターミナル③ 3.

\$ rostopic pub /ypspur_ros/cmd_vel geometry_msgs/Twist [0.1, 0, 0] [0, 0, 0.3]

4. ターミナル(4)

\$ rosrun odomtest odom_to_csv_node

ターミナル③を実行するとすぐ山彦が動いてしまうので、ターミナル③と④は同時に実行する ⇒数秒したら止めてみて、workspaceのフォルダ直下にcsvファイルが保存されていることを確認

オドメトリについて

https://openspur.org/~atsushi.w/jikken/odometry_and_coordinate.pdf

□ クォータニオン,オイラー角の説明

https://qiita.com/drken/items/0639cf34cce14e8d58a5

