

University of Tsukuba, Intelligent Robot Laboratory

「ROS」の使い方 ※ROS.org

資料作成:FJY, AZM, DME, YMG, HND, KAT, TCB, NSK 発表:西村 浩毅(NSK)

2022年度第3回山彦セミナー

山彦動かす

ノード作る

便利機能

発展

構成 今回の目標

■ROSの概要、システムを理解する ROSで山彦を動かす ROSのプログラミングをする

概要

2

以上は山彦セミナー課題に 取り組むうえで必須の事項である

構成 山彦

ノード作る 山彦動かす

便利機能

発展

- □ 今回のセミナーの最低要件
 - ROSがインストール済み

概要

注意点

- 山彦をypspur-rosで動かせる
- ↑前回のセミナーで完了のはず まだの人は早急に行うこと
- □ 注意点

3

- 本カリキュラムは今年が初 不手際があればすみません
- 知ってる人は先をやっててOK
- ypspur_rosの導入が今年からなので、不手際があるかも しれない
- 公式ROS Tutorialに必ずしも沿わない

2年度第4回山彦セミナー 2022-0

- Unixコマンドラインわかる?
- C++/Pythonのクラスわかる?

ROSの概要 山彦でROSを使う 実践

2022年度山彦セミナー第3回

⁶ ROSの概要

- □ ROSとは
 - ロボット用ソフトウェアの開発環境と通信フレームワークを提供 ※ROS2ってのもある

筑流大学 知能ロボット研究室

Un versity of Tsukuba, Intelligent Robot Laboratory

- オープンソース(無料)
- 複数の対応言語・対応環境
 - メインはC++とPython
 - Ubuntu(推奨)、Windows、MacOS
- ロ メリット
 - パッケージ導入が楽
 - 共同開発しやすい
 - 公開パッケージの導入が楽
 - パッケージの取捨選択が楽
- 🛛 デメリット
 - <u>公式チュートリアル</u>が初学者向けではない
 今回の山セミ後見ることを推奨

2年度第4回山彦セミナー 2022-0

7 ROSの概要

□ ROSのパッケージの例

- 視覚化ツール「rviz」
 - ROS標準搭載のビューア
 - センサデータやオドメトリを同時に複数表示可能

節流大学 知能ロボット研究室

Un versity of Tsukuba, Intelligent Robot Laboratory

- 地図作成ツール「gmapping」
 - SLAMによる2次元グリッドマップが作成可能
- 自己位置推定ツール「amcl」
 - 自己位置推定を行ってくれる
- ナビゲーションツール「move_base」

2年度第4回山彦セミナー 2022-0

■ 経路計画を行ってくれる

⁸ ROSの仕組み

□基本概念としては4つ

- Roscore:
 - ROSの基本的なプログラムやNodeの集まり

節流大学 知能ロボット研究室

Un versity of Tsukuba, Intelligent Robot Laboratory

Node:

■ ROSにおけるプログラムの基本単位

Topic:

Node間の通信を行うための機構

Service:

■ Node間の関数呼び出し

9 ROSの仕組み(roscore)

■ NodeやTopic、Serviceの管理を行う

- ROS Master:Nodeの名前登録、解決を行う
- ROS Parameter Server:パラメータを共有
- rosout:ログ記録用のNode

□ roscoreの起動後,各Nodeを実行する

\$ roscore

\$ rosrun "パッケーシ`名" "ノート`名" "引数"

これがrosの基本的な使い方

□ 複数のNodeをまとめて実行することも可能

筑流大学 知能ロボット研究室

Un versity of Tsukuba, Intelligent Robot Laboratory

roslaunch(後ほど説明)

\$ roslaunch "パッケーシ゛名" "ランチ名".launch

2年度第4回山彦セミナー 2022-0

10 Node

Node:ROSにおけるプログラムの単位 各センサやロボットを一つのノードとして扱う Node間の通信はroscoreを通じて行う

11 Topic

■ Node間の通信を行うための機構

度第4回山彦セミナー 2022-0

- □ Nodeには<Publisher>と<Subscriber>が存在

 - <Subscriber>は必要なデータをTopic経由で受信
 - Publishされたデータはすべての<Subscriber>に一斉送 信される

筑流大学 知能ロボット研究室

Un versity of Tsukuba, Intelligent Robot Laboratory

12 Service

Node間のrequest-response型の通信機能 Node間の関数呼び出しのようなもの データの送受信のみでなくClient側から処理を 行わせることが可能

ROSの概要 山彦でROSを使う 実践

2022年度山彦セミナー第3回

¹⁴ 山彦でのROS使用方法(ypspur-ros)

□ ypspur-rosを使用する

- ROSの"cmd_vel"トピックをsubscribeしてYP-spurからモータコン
 トローラへ目標速度を送る
- YP-Spurのオドメトリ情報をROSにpublishする

2年度第4回山彦セミナー 2022-0

<u>とにかく、"cmd_vel"というトピックに司令値だけ送ればロボット</u>
<u>を動かしてくれるインターフェースになってる!すごい!</u>

筑流大学 知能ロボット研究室

Un versity of Tsukuba, Intelligent Robot Laboratory

¹⁵山彦でのROS使用方法(ypspur-ros)

□ ypspur-rosの使い方

- 1. 1つ目のターミナルで \$ roscore
- 2. 2つ目のターミナルで

\$ rosrun ypspur_ros ypspur_ros _param_file:=/home/ <user>/researches/programs/platform/yp-robotparams/robot-params/<ロボットの種類>.param

3. "cmd_vel" トピックを publish する ROS のプログラムを実行

16 前回のコマンドの復習

□ 前回山彦を動かしたコマンドは・・・

- 1. ターミナル① \$ roscore
- 2. ターミナル②

\$ rosrun ypspur_ros ypspur_ros _param_file:=/home/ <user>/researches/programs/platform/yp-robotparams/robot-params/<ロボットの種類>.param

\$ rostopic pub /ypspur_ros/cmd_vel geometry_msgs/Twist [0.1, 0, 0] [0, 0, 0.3]

節流大学 知能ロボット研究室

Un versity of Tsukuba, Intelligent Robot Laboratory

↑/cmd_vellこPublishをして動かしていた

2年度第4回山彦セミナー 2022-0

 とにかく、/cmd_velというトピックに 指令をPublishすることで動かせる!!!!!!

¹⁷ Tips (terminator)

ROSではターミナルをたくさん起動する そのためターミナルを分割できるterminatorを newPCで入れた

- terminatorのショートカットキー
 - ctrl + alt + t: 起動
 - ctrl + shift + e: 縦分割
 - ctrl + shift + o: 横分割
 - ctrl + shift + w: 小窓削除
 - ctrl + tab: 小窓移動

2年度第4回山彦セミナー 2022-(<u>筑</u>流大学 知能ロボット研究室

18 ROSを使う前の事前確認

□ ターミナルを起動し、以下のコマンドを入力

\$ cat ~/.bashrc | grep ros

"source /opt/ros/noetic/setup.bash"と

表示されるか確認。されない場合、

\$ echo source /opt/ros/noetic/setup.bash >> ~/.bashrc
\$ roscore

エラーが出ないか確認.大丈夫ならCtrl+c

□ joy入ってますか?(課題で使います)

■ ゲームパッドの入力をROSで読み取り、

トピックに流すパッケージ

\$ sudo apt update
\$ sudo apt install ros-noetic-joy

コピペ非推奨

Tab補完推奨

ROSの概要 山彦でROSを使う 実践

2022年度山彦セミナー第3回

20 プログラムでROSから山彦を制御する

- □ ノードのプログラムを作ってロボットを制御する
 - ワークスペースの作成→パッケージの作成→プログラムの作 成
 - Iaunchによる複数ノードの起動
- □ 今回はPythonのプログラムを作る
 - C++のやり方は去年の資料とか見るといいと思います

山彦動かす

²¹ ROSのファイル構成

概要

構成

2年度第4回山彦セミナー 2022-0

<work_space>/

- build/
- devel/

L src/

- -CMakeLists.txt
- <package_1>/ +
- _ <package_2>/

-<work_space>/

 このディレクトリ下の パッケージの機能を実行可能

ノード作る

便利機能

発展

- 用途に合わせてワークスペースを複数 使い分けてもよい
- ただし、ワークスペースがPC内に複数ある 場合はコマンドで明示的に指示する必要が ある。これがだるい
- ROS本体にあるパッケージはワークスペー ス下に入れなくても使用可能

節流大学 知能ロボット研究室

Un versity of Tsukuba, Intelligent Robot Laboratory

- <work_space>/src/<package>

 このワークスペース内のパッケージ 次ページで解説 山彦動かす シノード作る

便利機能

筑流大学 知能ロボット研究室

Un versity of Tsukuba, Intelligent Robot Laboratory

発展

22 ROSのファイル構成

構成

回山彦セミナー

概要

概要 構成 山彦動かす ノード作る 便利機能 発展 23 ROSのファイル構成(今回使う部分)

節流大学 知能ロボット研究室

Un ver sity of Tsukuba, Intelligent Robot Laboratory

□ 以下コマンドでワークスペースを作る

構成

\$ mkdir -p ~/<work_space>/src

概要

- \$ cd ~/<work_space>/
- \$ catkin_make

24

\$ source devel/setup.bash

- *ワークスペースとなるディレクトリの作成
- *ワークスペースとなるディレクトリの作成
- *ワークスペースのビルド
- *ワークスペースのセットアップ
- \$ echo source ~/<work_space>/devel/setup.bash >> ~/.bashrc

課題1:ROSワークスペースを作る

- *bashrcに4つ目のコマンドを追加する。ターミナル起動時に自動で4.のコマンドを実行するように
 - <work_space>は各人自由に変更してください
 - catkin_makeはカレントディレクトリが<work_space>でないと エラーが出ます

 概要
 構成
 山彦動かす
 ノード作る
 便利機能
 発展

 25
 課題2:ROSパッケージを作る

\$ cd ~/<work_space>/src
 *<ワークスペース>/srcに移動
\$ catkin_create_pkg <package_name> std_msgs rospy roscpp
 *パッケージの作成
\$ cd ~/<work_space>/

*ワークスペースに移動

\$ catkin_make

*ワークスペースのビルド

注:<package_name>の1文字目は必ず小文字にすること!(バグる)

26 概要 構成 山彦動かす ノード作る 便利機能 課題3:ROSノードを作る (Python)

\$ cd ~/<work_space>/src/<package_name>
*パッケージのディレクトリに移動
\$ mkdir scripts
*scriptsディレクトリ(Pythonソースコードのディレクトリ)の作成
\$ touch <file_name>.py
*pythonファイルを作成する。<file_name>には好きな名前を入れる。これがノードになる
\$ chmod +x <file_name>.py
*ノードのファイルを実行可能にする。これをしないと後でエラーが出る。

発展

筑流大学 知能ロボット研究室

Un versity of Tsukuba, Intelligent Robot Laboratory

どんな方法でもいいので、作成したノードのファイルに山セミのペー ジからダウンロードしたsample.pyの内容をコピペする。

\$ cd ~/<work_space>/
\$ catkin_make
*ワークスペースのディレクトリに移動してビルドする。

2年度第4回山彦セミナー 2022-0

27 課題4:ROSノードを起動

ノード作る〕

便利機能

発展

□ 左スティックを動かすと山彦が動く!!!!!!

課題4のノードを起動したまま、別のターミナルで以下のコマンドを実行する

\$ rosnode list

*現在起動しているノードの一覧が表示される

/controllerNode

/joy_node

/rosout

/ypspur_ros

\$ rostopic list

*現在流れているトピックの一覧が表示される

/diagnostics

/joy

…(省略)

/ypspur_ros/cmd_vel

...(省略)

²⁹ プログラムの解説

- ControllerNodeはjoy(ゲームパッドの入力のトピック)を Subscribe
- それが更新されるたびに(入力があるたびに)cmd_velトピックへ
 速度指令をPublishしている(とにかくcmd_velを殴って動く!)

rospy.init_node("controllerNode")

self.sub = rospy.Subscriber('joy', Joy, self.joy_callback)

self.pub = rospy.Publisher('/ypspur_ros/cmd_vel', geometry_msgs.msg.Twist, queue_size=10)

def joy_callback(self, joy_msg):
 twist = geometry_msgs.msg.Twist()
 twist.linear.x = float(joy_msg.axes[1]) * 0.1
 twist.angular.z = float(joy_msg.axes[0]) * 0.5
 self.pub.publish(twist)

2年度第4回山彦セミナー 2022-(**1)()** The sits of Taukuba, Intelligent Robot Laboratory

30 課題6:トピックの送受信を図で見る

課題4のノードを起動したまま、別のターミナルで以下のコマンドを実行する

■ デバッグに使える

31 課題7:ノードをまとめて起動する(launch)

\$ cd ~/<work_space>/src/<package_name>
*パッケージのディレクトリに移動
\$ mkdir launch
*scriptsディレクトリ(Pythonソースコードのディレクトリ)の作成
\$ touch <launch_file_name>.launch
*pythonファイルを作成する。<launch_file_name>Iこは好きな名前を入れる。
\$ chmod +x <launch_file_name>.launch
*launchファイルを実行可能にする。これをしないと後でエラーが出る。

どんな方法でもいいので、作成したlaunchファイルに山セミのペー ジからダウンロードしたsample.launchの内容をコピペする。

32 課題7:ノードをまとめて起動する(launch)

コピペしてきたlaunchファイルを書き換える

```
<launch>
<node name="ypspur_ros" pkg="ypspur_ros" type="ypspur_ros">
<param name="param_file"
value="/home/<user>/researches/programs/platform/yp-robot-params/robot-
params/<山彦の種類>.param"/>
</node>
<node name="joy_node" pkg="joy" type="joy_node"/>
<node name="yourNode" pkg="joy" type="joy_node"/>
<node name="yourNode" pkg="<package_name>" type="<file_name>.py"/>
</launch>
```

value=~~~のところを自分のypspur_ros起動時のパラメー タに書き換えてください

33 課題7:ノードをまとめて起動する(launch)

\$ roslaunch <package_name> <launch_file_name>.launch *作成したlaunchファイルが起動する

- このように、launchファイルを作ることでまとめてノードを起動でき、大変便利(roscoreも自動で起動してくれる)
- 色々オプションがあるのでlaunchファイルの書き方はネットで 調べてください
- 参考:
- https://kazuyamashi.github.io/ros_lecture/ros_launch.html

